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Abstract 

It is proved that the second-order derivative of the 
correlation function, relevant to an amorphous N- 
component sample, can have a first-order discon- 
tinuity at a point r0 (S0)  only when the interfaces 
have the following geometrical property: there exists 
a finite-area subset of one phase boundary, say S~, 
such that any point P1 of this is far away, r0, from a 
point P2, belonging to another boundary, say Sj, and 
moreover the segment P1P2 is orthogonal both to $~ 
and to Sj. The explicit integral expression of the 
discontinuity is obtained. The relevance of this result 
to the analysis of scattered intensities showing a sys- 
tematic deviation from the Porod-Debye law is 
pointed out. 

I. Introduction 

The standard intensity [ i(h)] of the radiation scattered 
by a sample is related to the so-called correlation 
function y(r) of the latter by the relation 

i(h) = ~ exp(ih,  r)T(r) dr. (I.1) 

In the case of amorphous samples, y(r) depends only 
on r and thus (I.1) becomes 

co 
i(h)=(4"n'/h) ~ ry(r) sinhrdr.  (1.2) 

o 

The behaviour of i(h) at very large momentum trans- 
fers h is related to the discontinuities of the derivatives 
of the correlation function. In fact three subsequent 
partial integrations of (I.2), together with the 
hypotheses that 3;(r), the first-order derivative of 3'(r), 
is continuous and that y(r) and its derivatives 
decrease sufficiently fast at infinity, yield 

i(h) = -47r 2q/(O+)+Y.,8, cos(hS,)A(2)(S,) h 4 
1 

+o(h4). (I.3) 

Here 
A (2)((~i) ~ ~//(~+) -- 'Y(~F)  (I.4) 

represents the value of the first-order discontinuity 
of ~;(r) at the point 8i. Porod (1951, 1982) and Debye, 
Anderson & Brumberger (1957) have obtained the 
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explicit relation between 3~(0 ÷) and the areas of inter- 
phase surfaces and thus (I.3), once one considers 
only the first contribution on the r.h.s., is known as 
the Porod-Debye law. 

The second term on the r.h.s, is usually neglected 
on the basis of the fact that almost all the samples 
one actually deals with are polydisperse ones. 
However this argument is not completely satisfactory 
since we do not exactly know the explicit relation 
between the possible discontinuities of ~;(r) and the 
geometrical shape of interfaces. Up to now in fact 
some configurations are known where discontinuities 
are present. In fact, they have been found in the 
correlation function of a spherical particle, with 
radius R, at the point r = 2R (Guinier & Fournet, 
1955) as well as in that of a cubic particle, with edge 
L, at the point r =  L (Goodisman, 1980). These 
examples clearly support the former statement. In 
fact, since these discontinuities are related to the 
dimensions of the particles, one expects that, on the 
r.h.s, of (I.3), N is so large that the sum of all the 
oscillatory contributions washes out. 

We emphasize however that the former argument 
cannot be considered satisfactory in as far as we do 
not know a sufficiently general answer to the question: 
what are the geometrical conditions that generate the 
first-order discontinuities in the second-order deriva- 
tive of the correlation function? 

Wu & Schmidt (1974) in a very interesting paper 
addressed a question much more general than the 
former. They tried to determine how the coefficients 
Ai and /zi that appear in the asymptotic expansion 
Y.~ A~h -~' of the scattered intensity are related to the 
geometrical shape of the particles. They actually suc- 
ceeded in obtaining both the exponents /x~ and the 
way the coefficients Ai are related to some geometrical 
features of particles near the so-called extremal 
chords. By so doing, however, they made some 
assumptions that considerably restrict the field over 
which their results apply. In fact they only considered 
particles with a strictly convex shape and neglected 
any possible crossed interference effect. 

In this paper we analyse the above question by 
using the general formalism developed by Ciccariello, 
Cocco, Benedetti & Enzo (1981). We shall prove that 
the second-order derivative of the so-called stick 
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probability function (SPF) Po (r) relevant to the phase 
pair (i, j) has a first-order discontinuity at a particular 
value ro (ro ~ 0) when there exists a finite-area subset 
S~ of the ith phase boundary S~ whose distance from 
Sj is to. By that we mean that, if one considers the 
straight line orthogonal to S~ at a particular point, Pi, 

and ni denotes the (bulk) electronic density of the 
ith phase. 

The standard correlation function y(r) of the 
sample is defined as (Debye & Bueche, 1949) 

7(r) = (it/2)v)- '  ~ v( r , )v( r ,+r )  dvl, (II.4) 

the former line is also orthogonal to Sj and it intersects 
the latter at a point Pj such that IP, P~I = ro. The explicit ~ where r/(r), the electronic density fluctuation, reads 
relation between the geometrical configuration and 
the value of the discontinuity is worked out in the 
case of elliptical contact points and represents the 
main result of the paper. 

This is organized as follows. In the next section 
(§ II) we review and generalize slightly the definitions 
of SPFs. In § III we report the general integral 
expressions of the lowest-order derivatives of the 
oriented stick probability functions (oSPF). The 
geometrical conditions that generate the first-order 
discontinuities of the oSPFs are obtained in § IV. In 
the next section (§ V) we prove the result mentioned 
above, while in the last section (§ VI) we discuss 
briefly the usefulness of this result for interpreting 
the 'anomalous' behaviour shown by the intensities 
scattered by some coal samples (Schiller & Mrring, 
1967; Perret & Ruland, 1968). More details on the 
mathematical derivations of some of our results are 
contained in two Appendices.* 

r / ( r ) -  n(r ) - in)pv(r)  
N 

= ~ i ( n i - ( n ) ) p v , ( r ) .  
1 

(II.5) 

in) denotes the average electronic density of the 
sample, which is given by 

N 

in) = E, n,¢,, (I1.6) 
1 

where ¢~ = V~/V is the volume fraction of  the ith 
phase. 

7(r) is related to the standard scattered intensity 
by (I.1). From (11.4) and (I1.5) it can be written as 

N 

y(r)= Z [ (n~- in ) ) (n j - in ) ) / i r l2 ) ]~o(r )  • (II.7) 
i , j  = 1 

Here, ~ij(r) is the oriented stick probability function 
(oSPF) relevant to the pair of phases i and j. It is 
defined as follows: 

II. General definitions 

The main hypothesis of small-angle-scattering (SAS) 
theory is that the sample is conceived as made up of 
a suitable number (N) of phases, which are character- 
ized by a constant electronic1 density. More 
definitely, sets V and V~ relevant to the sample and 
to the ith constituting phase, respectively, are related 
as follows: 

N 

V = U ,  V~, (II.1) 
1 

while the electronic density n(r) of the sample can 
be written as 

N 

n(r) = ~,i n, pv,(r). (11.2) 
1 

Here pv,(r), the function characteristic of set Vi, is 
defined as 

{~ when r~ V~ (I1.3) 
Pv, (r) = when r ~ V~ 

* These Appendices have been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 42235 
(12 pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CHI 2HU, England. 

t We emphasize that although we shall make explicit reference 
to X-r~iy scattering for greater concreteness, our results also hold 
true for neutron scattering. We shall follow closely the notation 
of the paper by Ciccariello et al. (1981), to which one should refer 
for details. 

~ij(r) = S dr1 pv,(rl)p~(r~ +r)/V. (II.8) 
R3 

It is easy to show that the ~ij(r)'s obey the following 
conditions. 

~ij(r) = ~ji(-r) >- 0 

~ ( 0 )  = q~8 U 

S ~o(r) dr~ V =  ¢,¢j 
R 3  

I ~i,s(r) dr~ V =  ~p, 
R3 

~s(r) dr~ V =  1. 
R3 

Here we have used the following definitions: 
N 

~ i , s ( r )  = ~ i  ~g(r) = I pv~(rl)pv(r+rl) dr1~ V 
1 R3 

(II.9a) 

(II.9b) 

(II.9c) 

(II.9d) 

(II.9e) 

( i i . 9 f )  
N 

~s(r)---- ~i ~i,s(r) = j" pv(rl)pv(r~ +r) dr1/V. 
1 R 3 (II.9g) 

The former equations generalize well-known relations 
(Goodisman & Brumberger, 1971; Ciccadello et al., 
1981) to the case of finite and anisotropic samples. 
They could be useful for analysing the accuracy of 
the simplifying assumption that real amorphous 
samples can be considered infinitely large, 
homogeneous and isotropic. This assumption yields 
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the following identities: 

~0(r)--= ~,j(r03,) = ~ij(r032), V03,, 03 2 (II.10a) 

~,s(r)-= q~,; ~s(r)-= 1. (II.10b, c) 

However, if one defines the (/j) SPF as the angular 
average of the corresponding oSPF, 

Po(r)=-(4rr)-l~ ~0(r03) d03, (II.11) 

one finds that the former assumption also implies that 
oSPFs and SPFs become identically equal. In that 
case the expression for the correlation fraction sim- 
plifies noticeably and reads 

N 

Y ( r ) = l - Y ' ,  (ni-nj)2pu(r)/(rl2). ( I I . 1 2 )  
i < j = l  

Equations (II.7) and (II.12) show that the problem 
of finding the discontinuities of the correlation func- 
tions y(r) and y(r) is tantamount to finding those of 
the oSPFs and of the SPFs, respectively. However, 
since the SPFs are related to the oSPF by (II.11), the 
knowledge of the discontinuities of the latter yields 
that of the former. For that reason, in the next two 
sections we shall deal with oSPFs. 

IlL Integral expressions for the derivatives of the 
oSPFs 

Similarly to the SPFs, the oSPFs can be looked at 
both as density probability functions (Debye et al., 
1957) and as volumes of some intersection sets 
(Porod, 1951). Since the last point of view will often 
be referred to in the following, we shall briefly 
describe it. Equation (II.8) shows that V~0(r ) is the 
volume of the intersection of the set V~ with the set 
that is obtained by translating Vj by the quantity - r .  
Let us denote by T(r) the linear operator that trans- 
lates the space by - r .  T(r)* transforms the set Vj into 
a new set, which will be denoted by T(r)Vj and 
consequently one could rewrite (II.8) as 

V~iy(r) = volume{ V~ n [ T(r) Vj]}. (III.1) 

This expression makes the continuity of ~0 (r) evident 
if one assumes that each set V~ is made up of a finite 
number of internally connected sets and each of these 
has a boundary that is almost everywhere regular. In 
other words the set of points where the boundaries 
have contact points and/or do not have a unique 
tangent plane has a null (two-dimensional) measure.f 

* We recall that T(r) is defined by the following functional 
mapping 

g(rl) = [ T(r ) f ] ( r0  -=f(r I + r), 

where f is an arbitrary function defined on R> 
t This assumption apparently does not look very strong, par- 

ticularly as far as the volume of the sample is finite. However, 
when the latter goes to infinity, the former hypothesis could fail. 
Actually it should fail if one believes in fractal dimensions (Bale 
& Schmidt, 1984). 

Once one has chosen this rather conservative point 
of view, one can easily obtain some useful integral 
expressions of the oSPF derivatives. 

III.1. First-order derivatives 

The use of Dirac's three-dimensional 6 function 
allows us to rewrite (11.8) as 

~0(r) = ~ dv, ~ dv j r ( r ,+r-r j ) /V .  (111.2) 
v, v, 

By applying to both sides of (III.2) the differential 
operator (9. V), where ~3 is an arbitrary unit vector, 
and by using Gauss' theorem one gets 

(~. V)~/j(r) = ~ (dS,. ~)pvj(r~+r)/V 
Si 

=- j "  (dSg. ~)pv,(rj-r)/V. 
s, 

(111.3) 

In the former integral, ri denotes the position vector 
of the infinitesimal subset dS~ of Si, the boundary of 
the ith phase, while the direction of dS~ is taken 
orthogonal to d& and (locally) external to V,. (The 
meaning of the symbols in the latter integral is quite 
similar.) 

The hypothesis on the regularity of phase boun- 
daries makes (III.3) mathematically meaningful. 
Equation (III.3) represents the sought integral 
expression of the first-order derivative of oSPFs. 
Besides, from (III.3) it appears evident that the ~0(r) 
first-order derivative represents the area of the projec- 
tion, on a plane perpendicular to ~, of the & subset 
that lies inside the set T(r)Vj. 

I I 1.2. Second-order derivative 

By applying (~3. V) to both sides of (1II.2) and by 
performing the same manipulations that led us to 
(III.3), one gets the following expression for the 
second-order derivative along two arbitrary directions 
/2 and ~: 

(ft. V)(~. V)~o(r) 

= - I  (dS,./2) ~ (dSj. ~)6( r ,+r - r j ) /V  
& sj 

= - ~  (dS,. ~) ~ (dSj . f i )8(r ,+r-r j ) /V .  
si sj 

(III.4) 

The presence of the 6 function implies that (III.4) 
can be expressed as an integral of a suitable 
function on the geometrical variety Sin  [T(r)S~] or 
equivalently on the set Sjn[T( - r )&] .  In general 
these varieties, being the intersection of two surfaces, 
will correspond to curves in a three-dimensional 
space, although one cannot a priori exclude the most 
complicated case that the former intersection sets are 
made up of isolated contact points, of curves and of 
surfaces. Leaving the discussion of the general case 
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to § IV, we shall now explicitly show how (III.4) can 
be converted into a one-dimensional integral when 
the set Sin  [ T(r)Sj] is a curve. 

Let 

ri = r i (u i ,  I~i) (III.5a) 

rj = rj(uj, vj) (III.5b) 

be the parametric equations of surfaces S~ and Sj, 
respectively. The 8 function requires that 

R(ui, uj; vi, vj;r)-r~(u,; v, )+r- r j (u , ;  vj)=0. (III.6) 

Let, for definiteness, 

U i = a i (  I ) i ,  r) 

uj = aj( v,, r) (III.7) 

vj = ~j( vi, r) 

be the solutions of (III.6) and let 

J ( 1 ) i , r ) ~ l O ( R x ,  Ry  , Rz ) /O(u i ,  uj, ~)j)l ( I I I . 8 )  

denote the absolute value of the Jacobian. The follow- 
ing formulae of differential geometry (e.g. Smirnov, 
1964)" 

dS, - -  dSio'i (III.9a) 

^=(Ori  ~ ) /  
O" i ~ O U i  x ( E i G i - F 2 )  1/2 (III.9b)* 

dS, = (E,G~ - F~) 1/2 du, dr, 

Or~ Ori Or~ Or~ 
Ei -~ - - -  . , Fi = • , Gi =-- - -  Ou~ Ou~ Oui Ovi 

(III.9c) 

0r~ 0ri 

c3Vi OVi 

(III.9d) 

allow us to express integral (III.6) in terms of vari- 
ables {u, v}. Then the use of the identity 

~ ( R ) =  j - l ~ ( u i - a i ) ~ ( u j - a j ) ~ ( 1 ) j - ~ j )  (III.10) 

makes the integration with respect to ui, uj and vj 
immediate. One finds 

(/2. V)(~. V)~o(r) 

= - V  -1 dvi / ~ . - -  
OU i Ol.)i] 

x ( ~ .  OrjxOrJ~/J~].  (I11.11) 
Ouj Ovj/ / j 

The vertical bar reminds us that the integrand must 
be evaluated by using solutions (III.7). Equation 
(III.11) represents the looked for expression. In fact 
we can choose v~ as the curvilinear coordinate of a 
point belonging to the curve Sic3[T(r)Sj]. Con- 
Sequently, (III.11) expresses the second-order deriva- 

* It is here understood that the labelling of variables {u} and 
{v} has been performed in such a way that the orientation of ~i 
coincides with the one defined below (111.3). 
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tive of P,.i(r) as an integral of a known function, i.e. 
the expression inside curly brackets, along the former 
curve. 

IV. Geometrical configurations yielding first-order 
discontinuities in the derivatives of oSFPs 

It has already been emphasized that oSPFs are con- 
tinuous functions since the phase boundaries have 
been assumed to be almost everywhere regular. Their 
derivatives however can be discontinuous as will 
appear clear from the following discussion. Our atten- 
tion will focus on first-order discontinuities since they 
determine the coefficients of the leading terms in the 
asymptotic expansion of i(h) at large h. The first-order 
discontinuity of a function f(r) will be defined as 

lim+f(r+ e03)- l i nk f ( r -  e03 ). (IV.l) 
e-~ O e"~ O 

This definition makes the dependence of the discon- 
tinuity value on the direction 03, along which one 
approaches to the discontinuity point, evident. 

IV. 1. First-order derivative 

If we put 

So(r) -= Si c~ [ T(r) Vj] (IV.E) 

(III.3) can be written as 

(~. V)~o(r ) = ~ dSi. ~/V. (IV.3) 
sq(r) 

This equation shows very deafly that discontinuities 
can arise only from those of S0(r). On the other hand, 
the latter can exist only when the set obtained by 
translating Sj by - r  superposes on an Si subset having 
a non-null area• More explicitly 

SO(r) ~- Si ~ [ T(r)Sj] (IV.4) 

must exist as a two-dimensional variety. Let us define 
now the two-limit subsets 

s~(03, r)--- lim so(r)c~[T(r+e03)Vj]. (IV.5) 
e-~O + 

Clearly the regularity of phase boundaries yields the 
following properties 

+ A So(w,r)c~s~(03, r ) = ~  (IV.6a) 
+ ^ - -  A so(w,r)wso(w,r)c_so(r), (IV.6b) 

where • is a set having a null two-dimensional 
measure. By combining (IV.5), (IV.l) and (IV.3), the 
expression for the first-order discontinuity 
A~)(~, 03, r) of the (ij) oSPF follows immediately: 

VA~)(~,03, r) = ~ ~ . d S , -  5 ~.dS,. (IV.7) 
+ ^ 

$ q ( t a , r )  $ ~ ( O 3 , r )  

Thus the existence of a first-order discontinuity is 
related to the existence of the set s0(r). The value of 
the discontinuity will depend on 03 and ~ as is shown 
by (IV.7). Fig. 1 illustrates a typical configuration. 
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One has two subsets in the r space where (~. V)~u(r) 
has first-order discontinuities. The first subset is made 
up of the r values, which yield (partial) 'translational 
overlapping' of the half-circular cylindrical surface 
S~ with the equally shaped surface S'~. This subset is 
made up of the point P having coordinates (rt, 0, z) 
with - H - <  z <-H and thus it is a linear subset. The 
second subset is originated by the (partial) 'transla- 
tional overlapping' of planar surfaces $2 and S~. This 
subset is a planar one since the translation r values, 
yielding a superposition, are {r2, y, z} with - L -  y _< L 
and -H_<  z<_ H. 

IV.2. Second-order derivative 

By a subsequent differentiation of (IV.3), the dis- 
continuity found will give rise to a (one-dimensional) 
3-like contribution. It will appear clear later that these 
contributions do not give rise to first-order discon- 
tinuities in the derivatives of the correlation function 
of amorphous samples. These discontinuities in fact 
arise from one of the two possible kinds of genuine 
first-order discontinuities of the second-order deriva- 
tives of oSPFs. 

From (III.4) and (III.11) it appears clear that the 
two geometrical configurations that can originate a 
first-order discontinuity are: (i) one of the boundaries, 
say Sj, has a sharp edge %(r), which, after being 
translated by - r ,  superposes itself on S~; (iii) Sj, once 
it has been translated by - r ,  is tangent to S~ at a point 
of the latter and moreover the tangent plane is 
orthogonal to r. 

We stress that in both cases, after the translation, 
one obtains the same geometrical configurations that 
are responsible for a non-null second-order derivative 
value of SPF's at the origin (Ciccariello et al., 1981; 
Ciccariello & Benedetti, 1982, 1985a). 

Let us first discuss case (i). 

IY B~ 

B B a2', "'-,  
1 ~  11 - , , ~  ,, 

B -  , , ,, 

• <./~/'/..-A ~-~ _~ . . . . . . .  ,---~c, ",, \ ,  

' - " -  . . . . .  4 .  . . . . .  

A, 
^ ^ 

Fig. 1. The continuous curves AIBIVt and AIB1B~A ~ represent 
the normal sections of two cylindrical particles made up of 
different phases but having the same height, the same curvature 

/ ~ + / - ) +  z l +  radius, and their lower bases on the (xy) plane. ,~t ,.-~ ,,~ and 
B-~D-~A-( represent the configurations of the first particle once 
this has been translated by - ( h  + e~) and - ( h -  eo3). BIDA~, 
B~D+D and DD-A~ represent s~j(rt), s~(r~, o3) and s~.(h, o3), 
respectively. (D denotes the intersection of the straight line 
orthogonal to o3 at C~ with the half-circle.) 

The presence of the edge e0(r) allows us to look 
at S s as made up of two smooth surfaces: Ss, 1 and Sis , 
which meet along e0(r). This fact, on the one hand, 
implies that (III.11) is ambiguous since one does not 
know whether the parametric equation of Sj,~ or that 
of Sis must be used when one performs the integral 
along e0(r ). On the other hand, it shows that, by 
letting r change infinitesimally, the new intersection 
curve Sic'~[T(r+eo3)Sj]  will be partly on Sj, l and 
partly on Sj.2, but, eventually, for sets having zero 
length. (See Fig. 2, which shows a typical configur- 
ation.) The limiting integral value will depend of 
course on the chosen o3 direction as we let e go to 
zero. In this way the origin of the discontinuity is 
explained and one can obtain the integral expression 
of the discontinuity. To this end let us define the 
limiting one-dimensional sets 

eij=,,(o3, r) = eij(r)r~(l im S,r~[T(r+e~)Sj,,]). (IV.8) 
e - ~ O  

In a quite similar way one defines eii~2(o3, r). If we 
denote by F~(v) and by F2(v) the integrand of 
(III.11), once we have used there the parametric 
equations of Si, ~ or of Si.2, respectively, the sought for 

,i ( 2 ) (  discontinuity value a ij , . . . )  reads 
a c2),^ ^ A r) /j k/z, p, to, 

e~,l(,;,r) 

Now we turn to the analysis of case (ii). 
After having translated Sj, the geometrical configur- 

ation of Si and of T(r)Sj is essentially that of the 
case considered by Ciccariello & Benedetti (1982). 
The only differences are that now we do not have to 

111 A 

/ A / .~" 

Fig. 2. The continuous lines represent the normal sections of two 
cylindrical particles. V denotes the sharp edge, which after 
translation by - r ,  is superimposed on the ith particle boundary 
at P. The figure shows that in (111.5) one must use the parametric 
equation of surface VB or VA depending on whether the limiting 
configuration is reached along V÷P or V_ P, respectively. 
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perform the o3 integration and that we must pay some 
attention to the nature of the contact point Po. This 
can correctly be called parabolic when the tangency 
condition is of higher order than first. In the other 
cases, we must distinguish the two situations: (i) 
T(r)Sj lies completely inside or completely outside 
V~ in a sufficiently small neighbourhood of Po; or (ii) 
T(r)S~ lies partly inside and partly outside V~. In the 
two cases, Po is called elliptic or hyperbolic, respec- 
tively. Let us choose the origin of a Cartesian system 
of axes at the contact point, the z axis parallel to r, 
and let us denote by z =f~(x, y) and by z =fj(x, y) 
the parametric equations of the two surfaces $~ and 
T(r)Sj, respectively. The equation 

z = F(x, y)=£(x, y)-f~(x, y) 

will represent the parametric equation of the surface 
defined as 'the difference' between T(r)Sj and S~. 

By following now the procedure of the paper referred 
to above one can show that each elliptic contact point 
yields a first-order discontinuity given by 

(2)('^ ^ "* r)  Aij ,,/.6, /,', to ,  

= -2¢r  sign (r .  o3) sign (2~j)(/2. ~i) 

× (~ .  6j)/H~/2(r) V. (IV.10) 

Here H(r)  denotes the Hessian of F(x, y) at origin, 
while sign (Zij), ~,  ~,  denotes the sign of the surface 
2, i.e. of F(x, y), next to the origin, and the unit 
vectors orthogonal, at the contact point, to S~ and Sj, 
respectively. 

When the contact point is a hyperbolic point of E, 
the limits of the second-order derivative of Pu(r + eta), 
as e ~ 0 +, are no more finite, although the Cauchy 
first-order discontinuity is still finite. The behaviour 
in the case of a parabolic point is more involved. We 
refer to Appendix A* for a more detailed discussion 
of all these cases. 

V. Discontinuities of SPF derivatives in the case of 
amorphous samples 

The oSPFs relevant to macroscopically isotropic and 
homogeneous samples coincide with their angular 
averages, see (II.11). Therefore we shall now analyse 
the continuity property of the latter. The continuity 
of P~(r) follows from that of ~0(r). It is immediately 
shown from (II.11) that the nth-order derivative of 
Pu(r) can be written as 

d"Pij(r)/dr" =(47r) -x ~ (o3. V)n~ij(ro3) do3. (V.1) 

In this way the discontinuities of the derivatives of 
SPFs can be immediately found by performing the 
angular averages of the discontinuities of the corre- 
sponding oSPF derivatives. 

Let us first discuss the case of the first-order deriva- 
tives. According to our former analysis, the first-order 

* See deposition footnote. 

derivative of the (i, j )  oSPF can have a first-order 
discontinuity only when Sin[T(ro3)Sj] has a finite 
area. From (V.1), with n = 1, one concludes that the 
corresponding (/j) SPF derivative will have a discon- 
tinuity at the point r only when the former condition 
is satisfied on a set of o3 directions that has a non-null 
measure. However, an infinitesimally slight rotation 
of r, but for the case r = 0 ,  is such that the new 
intersection set Si c~ {T[r(O3 + 6O3)]Sj} is generally* a 
line. Thus one concludes that P~(r) cannot have first- 
order discontinuities when r ~ 0. 

We turn now to the analysis of second-order deriva- 
tives. Equation (V.1) with n = 2  and the results of 
§ IV.3 allow us to conclude that first-order discon- 
tinuities can be present in/5~(r), with r # 0, only when 
we have 'translational sharp edge' and /o r  'transla- 
tional contact points' for a set of translations to3, such 
that the measure of the corresponding o3 set is non- 
null. Once more the standard shape of boundaries 
rules out the possibility that 'translational sharp 
edges' could yield a finite contribution. By contrast, 
one can have translational contact points associated 
to a set of translations to3 such that the measure of 
the o3 set is finite. A well-known example is the case 
of a spherical particle. Let R denote its radius. It is 
evident that, by translating this particle by 2Ro3, for 
any o3 the translated particle will be tangent to the 
initial sphere. Besides, the tangent plane is orthogonal 
to o3 and the contact point is elliptical for the corre- 
sponding 'difference surface'. In order to evaluate the 
discontinuity of/5~1(r) ('1' denotes the phase inside 
the spherical particle that coincides with the sample) 
one must simply average A ¢2){1~ ~w,~ to, ^ to,A 2RO3), given by 
(IV.10) over all possible directions. We recall now 
that the Hessian of the surface 'difference' of two 
spheres in contact and having radii R1 and R2, is 
equal to (R2 ~-  R?~) 2 or to (R2 ~ + R~-~) 2 depending 
on whether the sphere centres lie on the same side 
or on the opposite sides of the contact point, respec- 
tively. By substituting the second value in (IV.10) one 
gets 

A~])(2R) = lim/51~(2R + e ) - l i m / 5 ~ 1 ( 2 R -  e) 
e~0 e~0 

= - 3 / 4 R  2. (V.2) 

This result can be immediately checked by evaluating 
the second-order derivative of the correlation 
function relevant to a spherical particle (Guinier & 
Fournet, 1955). 

It must be emphasized that the constraint on the 
nature of the contact point can be considerably 

* Of course we are excluding the fact that the boundary of each 
phase has such a folded and winding structure that one can have 
overlapping on a finite set of o3 directions when we let the volume 
of the sample become infinitely large. Once more one can 
confidently expect that this phenomenon could take place in 
samples which become 'fractals' as their size becomes infinitely 
large. 



566 DEVIATIONS FROM THE POROD LAW 

weakened. To this aim, we write (V.1), when n =2 ,  
in a more explicit way by using (111.4): 

/5,j(r) = - (1/4rrV) ~ do3 ~ (ds,. 03) ~ (dSj. 03) 
$i $i 

x 6(r, + ra3 - r j ) .  (V.3) 
A 

We denote by O(r )  the subset of o3's such that the 
translations of  Sj by -to3 yield a contact point with 
Si. The symmetry of (V.3) allows us to think that we 
have a spherical surface rl2 and that, after Sj has 
been translated by the quantity - r j  - r -  rj, the trans- 
lated set T(r~)Sj has a contact point with the spherical 
surface rO. In other words we are interchanging the 
role between r and r~. In this way we first analyse the 
ri-translation contact points between Sj and the 
spherical surface rl2 and subsequently we perform 
the average over S~. By so doing it can happen that 
the translational contact point betwen rO and Sj be 
elliptical and thus we can safely apply (A.16) with 
the appropriate changes. Before discussing an inter- 
esting example let us write down our general result. 
To this aim we introduce a new index, o, which will 
be appended to all the quantities that refer to the 
aforesaid spherical surface having radius equal to r. 
Then the general integral expression of the first-order 
discontinuity, generated by the fact that we have a 
finite area subset of Si that is at an 'orthogonally 
translated distance r'* from Sj, is given by 

a 

=-(1/2Vr2) ' dS, sign[~, (~,r)](~,.d'.,) 
gt 

^ 1 / 2  ^ x ( d', . cr . ) /  H . , . (  ~,r).  (V.4) 

In this equation (l, m, n) is one of the particular 
choices of  indices (i,j, o) such that the translational 
contact point between Sm and S, is an elliptical one. 
The integral is performed over that subset St of the 
remaining surface St, which ensures that one has an 
r-translational contact point. 

An interesting application of this result is that of 
a sample having a cubic shape of size L. Clearly when 
one shifts the cube by L along the direction of one 
edge, two faces will superpose. Thus /511(r ) could 
have a first-order discontinuity only at r=L. 
However, (V.4) cannot be used if one considers the 
choice (l, m, n) = (0, 1, 1)" the g~ set reduces to only 
one direction whilst the integrand does not exist, since 
H(L) = 0. However the choice (l, m, n) = (1, 0, 1) is 
quite meaningful. Indeed, the contact point between 
the sphere, having radius L, and the face of  the cube, 
opposite to the face where the sphere's centre lies, is 
elliptical. By recalling that a planar set has only one 

* By this expression we mean that any of the straight lines going 
orthogonally to Si from each point of the former subset will 
normally intersect S t after a distance r. 

curvature radius that is equal to +o0, we can apply 
the former expression for the Hessian. By substituting 
in (V.4) one gets 

A(2)tL)=-(1/2L3L2)[-6L2/(1/L)]=3/L2. (V.5) 1 1 ~ ,  

The correlation function of  a cube has been recently 
evaluated by Goodisman (1980). If one measures with 
a rule the height of the discontinuity shown in the 
figure of that paper at the point (r/L)= 1, one finds 
results (V.5).* 

Equation (V.4) represents the main result of this 
paper. It shows that the discontinuities in the second- 
order derivative of an SPF can arise at a point r only 
when a non-null subset of one phase boundary super- 
imposes on a second phase boundary once it has been 
orthogonally translated by r. 

It should be underlined that the particles are no 
longer required to have a strictly convex shape and 
that the boundaries we have always spoken of do not 
refer to a single particle but to a phase. 

The only constraint required for the validity of 
(V.4) is that contact points are elliptical for at least 
two of the three surfaces involved. Although this 
constraint could be physically violated in some cases, 
it does not appear unreasonable to think that the 
violation takes place only in sets having a null 
measure. 

The last remark deals with the sign of the discon- 
tinuity value. Equation (V.4) shows clearly that the 
sign, through the difference surface ,?, depends on 
the relative shape of Si and Sj. In fact, in the cases 
of a sphere and of a cube we have found that the 
discontinuity turns out negative (V.2) and positive 
(V.5), respectively. A further application of  (V.4) is 
given by the case of a particle having the shape of  a 
spherical shell whose radii are R1 and R2 (R1 < R:). 
This particle is cl.early a non-convex one. The 
discontinuities of P~(r) will be located at r=2R~, 
R 2 -  Rl, R2+ RI and 2R2. The corresponding values 
can be easily found from (V.4). They are -27r /  
V(2/RI), 47r/V(1/R~-l/R2), 47r/V(1/R~+1/R2), 
-27r/ V(2/ R2), where V -  47r( R 3- R~)/3. 

* Actually the check can be carded through exactly by evaluating 
the second-order derivatives of (5) and (6) of the above-quoted 
paper at the point r= L. One finds: Plt(L +) =3/L2+5/27rL 2 and 
Ptt(L-) = 5/27rL 2. The difference in these results is equal to (V.5). 
It is also interesting to note that the second-order derivative of the 
SPF relevant to a cubic particle cannot have further first-order 
discontinuities, since the condition of the 'finite-area overlapping 
consequent to orthogonal translations' is realized only for a transla- 
tion equal to the edge of the cube. By contrast, the figure referred 
to above shows a further spike at r = 2~/2L. This spike is probably 
an artifact due to rounding-off errors. In fact one can check that 
this discontinuity is not present, either by evaluating the second- 
order derivative of the difference of integral expression (7) and 
(6) a s  r~2t/2L+ [note that the quantity defined by (6) is C ~ 
around 2t/ZL], or by evaluating the derivatives of (8) and (6). The 
first route yields a null value, while the second one yields 
/i11(2t/2L+) = (3/2 21/2-17/4~- 2t/2)/L 2 = Pt 1(21/2L-). 
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Finally we recall that the results for the case r = 0 
are already known. For completeness however their 
discussion is carded through in Appendix B.* 

VI. Concluding remarks 

We would like to conclude this paper by showing the 
usefulness of the former results for achieving a better 
understanding of the apparent violation of the Porod- 
Debye relation. 

On the one hand the discussion of the previous 
sections has shown that (1.3) represents the fight 
asymptotic expansion of the scattered intensity pro-, 
vided one assumes that the phase boundaries are 
smooth except for null sets. On the other hand, (1.3) 
shows that hai(h) cannot be constant in the 
asymptotic region only because it can contain oscilla- 
tory contributions. These are related to the presence 
of 'parallel equidistant surfaces' and, moreover, 
the distance 8~ between the latter determines the 'os- 
cillatory frequency' of the cosine factor in the h 
space. 

The asymptotic h region for SAXS experiments lies 
in the range 0.05-0.5/~-~. Many reported graphs of 
h4i(h) show more than one oscillation in this region 
with respect to the Porod-Debye horizontal 
asymptotic although the amplitudes are generally so 
small to be considered as experimental uncertainties. 
However, one cannot exclude that, in more favour- 
able cases, by using (I.3) one can estimate the area 
of the parallel equidistant surfaces and their relative 
distance. A more interesting application of (1.3) deals 
with the so-called violation of the Porod law. Thls 
phenomenon consists in the fact that it is necessary 
to consider a dependence on h for a satisfactory fit 
of h4i(h) in the asymptotic region. Usually one 
assumes that h4i(h) behaves as A+ Bh 2, where A and 
B are suitable numerical coefficients (Schiller & M6r- 
ing, 1967). This fact indicates that experimentally one 
does not observe a complete large oscillation in 
h4i(h). Consequently 8 must have such a value that 
h/~ does not change appreciably (say less than 7r) in 
the asymptotic region. In this way 8 "- ~'/2hmax ~ 5]k. 
This value is so small that it cannot be related to the 
typical dimensions of particles that make up our 
samples. In a very interesting paper, Ruland (1971) 
has shown that the aforesaid linear h 2 behaviour of 
hai(h) can be obtained provided one assumes that 
the electronic density changes smoothly around each 
interface as we go from one phase to the other. This 
fact suggests that a more satisfactory idealization of 
the sample can be realized only if we assume that 
between phases '1' and '2' we have a further phase 
'3', whose electronic density is half-way between the 
bulk ones. In this way we substitute interface $12 for 

* See deposition footnote. 

two interfaces S13 and $23 (see Fig. 3). These are 
constructed in the following way: for each point Q 
of $12 one considers the straight line l orthogonal to 
$12. On each side of I we consider the two points Q1 
and Q2, which are far away (8/2) from Q. But for 
very small sets, S~3 and S2a will be made up of the 
points Q~ and Q2, respectively. By this construction, 
$13 and $23 will be equidistantly parallel and thus 
they will contribute a term proportional to cos (h/~) 
in the asymptotic expansion of hai(h). 

One can now show that the resulting coefficient in 
front of cos (hS) turns out positive (Ciccariello & 
Benedetti, 1985b). Consequently by expanding 
cos (hS) up to terms o(h 2) one finds a negative devi- 
ation from the Porod law. 

Positive deviations are produced by the fluctuations 
of the electronic density inside the particles of the 
sample. These fluctuations are present when the 
sample has a certain degree of crystallinity (Ruland, 
1971). In this case each particle will be more accu- 
rately described if it is seen as an ordered sequence 
of quasi-parallelepipedic regions with two electronic 
densities. The resulting parallel equidistant interfaces 
will produce oscillatory deviations. That relevant to 
the smallest distance is the most important one and 
yields a positive deviation. Thus, by combining these 

\ / ( i : i ~ ! i l  :!':~N2nd phase 

• ::(?))~ 

L:":::: :::::i 

. . . . . .  -".:.::..."i:-/ 

Fig. 3. The figure shows how one can go from a two-phase descrip- 
tion to a three-phase one. The former corresponds to assuming 
that the electronic density is n t inside the continuous line and 
n2 outside. The latter assumes that in the grey region the elec- 
tronic density is n 3 with n2< n3< n~. The new phase has a 
thickness 8 and its boundaries S~3 and $23 are obtained as the 
envelopes of  points Pt, Ql . . . .  and P2, Q2 . . . .  respectively. We 
note that P~P2 is orthogonal to $12 at P and that P I P  = PP2 = 8/2.  
For any direction 03, the shift of  S~3 by 803 will yield a contact 
with S23. However the sign of  the 'difference surface', for the 03 
directions relevant to region ( - )  (i.e. the concave part of  the 
boundary),  is equal to that of  region (+). 
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two effects, one ought to succeed in reproducing 
scattered intensities.* 

I am grateful to Dr A. Benedetti for fr iendly 
discussions. 

*A quantitative analysis of the intensities scattered by some 
carbon samples is now under way (Ciccariello & Benedetti, 1985b). 
One compares the goodness of the fits obtained by parameterizing 
i(h) either according to (I.3) or to Bale & Schmidt (1984), i.e. 
Ah -'~ + B. (Actually, in the first case, further changes are required 
if the intensities refer to slit-defined beams.) Our preliminary 
results, which refer to the intensities reported in Fig. 1 by Perret 
& Ruland (1968), show no significant differences in the two cases. 
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Abstract 

An improved method of  implement ing  the absorpt ion 
correction procedure  of  Stuart & Walker [Acta Cryst. 
(1979), A35, 925-933] is presented. This method 
scales measured  reflections to a partial  reference data 
set of  corrected intensities by determining,  for each 
crystal, a t ransmiss ion surface representing the rela- 
tive t ransmiss ion as a funct ion of secondary beam 
directions. By reformulat ing the observational  
equations and  by int roducing eigenvalue filtering of 
the least-squares normal  equations,  the problems of  
correlation between parameters  defining the trans- 
mission surface are reduced. 

Introduction 

Absorpt ion effects can create serious problems in 
macromolecu la r  crystal lography especially with the 
method of  i somorphous  replacement,  which depends  
on accurate determinat ion of  small  intensity differen- 
ces between reflections recorded from different crys- 
tals. A method  has been described (Stuart & Walker,  
1979; Walker  & Stuart, 1983) for deal ing with this 
source of  systematic error. The method depends  upon 
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having a reference data set that has been previously 
corrected for absorpt ion effects and to which the 
uncorrected measurements  are to be scaled, that is 

I~ef i = Tpslraw, (1) 

where I~ef is the absorption-corrected intensity of the 
ith reflection, i Iraw is the uncorrected measurement ,  
and Tps is the t ransmission factor parameter ized by 
the pr imary  and secondary beam directions p and s. 

In principle,  the t ransmission surface Tps can be 
determined if  a reasonably well distr ibuted set of  I~ef 
is available.  This reference data set ideally consists 
of  data that have been corrected by an empir ical  
method (e.g. K o p f m a n n  & Huber,  1968; North,  
Phill ips & Mathews,  1968), such as partial  diffrac- 
tometer data, which includes a uniformly distr ibuted 
sample of  strong reflections throughout  reciprocal 
space. Alternatively,  heavy-atom-derivat ive data may  
be scaled to native data, or calculated intensities can 
be used (Walker  & Stuart, 1983). 

In this paper  we extend the usefulness of  the 
original method  and make its appl icat ion more 
straightforward. These improvements  deal solely with 
the solution of  the least-squares equations and not 
with any fundamenta l  assumptions  of the approach.  
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